

Aeronautical Communication and Navigation

Aircrafts, Airports, Phases of Flight, Aeronautical charts

Professor Dr. Pornchai Supnithi

Telecommunications Engineering Department, School of Engineering Center of Excellence in GNSS and Space Weather

http://iono-gnss.kmitl.ac.th

1901 Radio transmission across the Atlantic, England

1903 Wright Brothers – first ever manned flight, USA

 1911 Cal Rodgers, \$50,000-prize ambition (if < 30 days) First transcontinental flight (84-hr in the air) 75 stops, 16 crashes, many hospital visits
 Modified Wright brothers plane (EX) 35-horsepower engine, 50-60 MPH

History

 January, 1st.
 First commercial flight, St.Petersburg – Tampa, Florida, USA, \$400
 5-m altitude, 21 miles, 23 minutes
 Benoist XIV plane

1919London-Paris flight
2 hr 30 min., £21 per passenger

1946	Cathay Pacific of Hong Kong	
1947	Malayan Airways Limited (late	er Singapore,
1951	Japan Airlines	Malaysia Airlines
1960	Thai Airways International	

Many types of aerial vehicles

4

Worldwide numbers

~240 airlines

~45,000 airports (World)~ 50 airports (Thailand)

June 29th, 2018 (Busiest Air Travel on Record)

202,157 planes in 24 hours

https://www.weforum.org/agenda/2018/07/the-world-s-busiest-day-for-air-travel-mapped

Aircraft parts and functions

Four Forces of Flight

Lift

$L = A_s * C_L * (\frac{1}{2} * p * v^2)$

P = air density (kg/m³) v = velocity (m/s) A_s = wing surface area (m²) C_L = coefficient of lift (no unit)

9

Compute the Lift given the following paramters

A_s = 510 m² C_L = 0.52 p = 0.30267 kg/m³ v = 265 m/sec Aircraft weight = 286 tons → L = A_s * C_L* (¹/₂ * p * v²) = 510x 0.52x (1/2) x0.30267x265² = 2,817,762.027 (newtons, N) = 287,233.56 (kg) ~ 287 tons

Angle of Attack (AoA), Stall

AoA = The angle which the Lift coefficients C will decrease.

http://rckavalaacroteam.com/lift-factor/

Roll, Pitch, Yaw

Rudder

Movement control

While taxiing..

In the air

Steering tiller

Yoke/Flight Control Column

Push backward – Descend

Tilt left

Engine start, Fuel, Electricity, Generator, A/C Lights around the plane, hydrolics, temperature Seat belt sign, **Cabin Pressure**

Inside the cabin of Boeing 737

Mechanical control: Throttle, Flap, reverse throttle

screen

15

Flight Instruments

Performance Instruments

Control Instruments

Navigation Instruments (1)

Navigation Instruments (2)

NATO/ICAO Phonetic Alphabet

International Radiotelephony Spelling Alphabet

The availability of at least one medium of universal communication is important. This is particularly true for safety and efficiency in international air navigation.

The alphabet below is used internationally, not only in aviation but also in maritime operations as well as in everyday communications.

> Alfa Bravo Charlie Delta Echo Foxtrot Golf Hotel India

Juliett

Kilo

Mike November Oscar Papa Quebec Romeo Sierra Tango Uniform Victor Whiskey X-ray Yankee Zulu http://www.icao.int Spelling alphabet, ICAO Annex 10, Vol. II

Lima

A Alpha B Bravo Charlie Delta D F Echo Foxtrot F Golf G Н Hotel India Juliet K Kilo Lima M Mike

AL FAH **BRAH VOH** SHAR LEE **DELL TAH** ECK OH FOKS TROT GOLF HO TELL IN DEE AH **JFW IFF** FTT **KEY LOH** LEE MAH MIKE

November Ν Oscar \mathbf{O} Papa Quebec R Romeo S Sierra Tango Т Uniform U Victor V W Whiskey X-ray X Yankee 7 Zulu

NO VFM BFR **OSS CAH** PAH PAAH **KEH BECK ROW MF OH** SFF AIR RAH TANG GO YOU NEE FORM VIK TAH WISS KEY ECKS RAY YANG KEY **ZOO LOO**

Call Sign

Unique designation for a transmitting station

Aircraft

- Type A: Registration number (marks)
 - (Thailand) HS321 \rightarrow Hotel Sierra three-two-one
 - (USA) N978CP \rightarrow November-niner-seven-eight-Charlie-Papa
 - ▶ (Britain) G4980 →
- Type B: Company/Agency + Registration Marks
- Type C: Flight number
 - Thai113
 - KLM645

Call Sign

- President of the United States
 - <u>Air Force One</u> (US Air Force aircraft)
 - Air Force One Foxtrot (when only the family of the President is aboard.)
 - Marine One (US Marine aircraft)
 - Navy One (US Navy aircraft)
 - Executive One (civilian aircraft)
- Vice President of the United States
 - Air Force Two (US Air Force aircraft)

Unit for Altitude – Flight level

- Normally, we use "feet" (ft) for Altitude
- After about 11,000 ft → Call flight level (FL)

FLAAA = AAA x 100 feet

FL300 = 30,000 ft

Units for Distance/Speed

- 1 NM (nautical mile) = 1.852 km = 6,076.1 feet
- 1 NM ~ 1.15 x statute mile (SM)
- 1 knot = 1 NMPH = 1.15 MPH = 1.852 km/hr
- 1 mach = 758 MPH

A flight is at 'En Route' level of FL300 and speed of 450 MPH, what is

(a) the height from ground in km, and(b) the speed in km/hr, knots, and machs?

```
(a) 33,000 \text{ ft} = 33,000 \text{ x0}.3048 \text{ m}
= 10,058.4 m ~ 10 km
```

```
(a) 450 MPH = 450x1.852/1.15
= 724.7 km/hr
= 450/1.15 = 391.3 knots
= 450/758 = 0.593 mach
```


- Preflight -This portion of the flight starts on the ground and includes flight checks, push-back from the <u>gate</u> and taxi to the runway.
- Takeoff The pilot powers up the aircraft and speeds down the runway.
- Departure The plane lifts off the ground and climbs to a cruising altitude.
- En route The aircraft travels through one or more center airspaces and nears the destination airport.
- **Descent** The pilot descends and maneuvers the aircraft to the destination airport.
- Approach The pilot aligns the aircraft with the designated landing runway.
- Landing The aircraft lands on the designated runway, taxis to the destination gate and parks at the terminal.

Typical Traffic Patterns

There are five different legs of the traffic pattern:

- Upwind Leg
- Crosswind Leg **Downwind Leg** Base Leg Parallel to runway **Opposite to landing Final Approach** direction 45° ENTRY DOWNWIND 45° DEPARTURE BASE CRO SSW IND STRAIGHT-OUT DEPARTURE UPWIND FINAL WIND

Procedures of Departure

1. Request clearance delivery (RCD) File a flight plan

2. Clearance delivery (CLD

3. Clearance delivery acknowledgement

(CDA) ATC Clearance Frequency

flight data person reviews the weather and flight-plan information and enters the flight plan into the host computer.

The computer generates a **flight progress strip** that will be passed from controller to controller throughout your flight.

Be prepared to enter different frequencies for Tower, Departure, etc.

Procedures of Departure

Tower Frequency

Ground controller directs the pilot to push back from gate, taxi to the takeoff runway, Short hold.

gives final clearance for takeoff

After takeoff

- at transition altitude
 (different for each country)
- at different altitudes
- Obtain Weather info
- Send ADSB signals
- etc.,.

En Route

Activates a transponder device in the aircraft

31

Descending

En Route

Radio frequencies at VTBS

Communication

Navigation

Service	Call sign	Frequency	Hours of	Remarks	1	2	3	4	5	6	7
designation			operation		DVOR/DME	SVB	111.4 MHz)	13 39 32.5 N		
1	2	3	4	5			CH51X		100 43 53.2 E		
APP	Bangkok Approach	122.35 MHz / 262.5 MHz	Ν	(1) Emergency frequency							
		124.35 MHz / 262.5 MHz		(2) Clearance delivery for	ILS CAT II	I-SWS	109.1 MHz		13 42 22.3 N		
		125.2 MHz / 262.5 MHz		aircraft departing to	LOC/DME		CH28X		100 44 37.8 E		
		121.7 MHz / 262.5 MHz		adjacent aerodromes	RWY 01L		5				
		125.8 MHZ (2)		and helicopters	GP		331.4 MHz		13 40 27.8 N		
		121.5 MHz ⁽¹⁾ / 243.0 MHz ⁽¹⁾		operating within BKK					100 44 03.6 E		
				CTR							
APP	Suvarnabhumi	119.25 MHz		(3) For RWY 01R/19L	ILS CAT IL	I-SWN	109.5 MHz		13 40 07.5 N		
	Departure			(4) For RWY 01L/19R	LOC/DME		CH32X		100 44 02.4 E		
					RWY 19R						
					GP	1	332.6 MHz	> H24	13 42 03.9 N		RWY01L/19R and
ARR	Suvarnabhumi Arrival	133.6 MHz	> H24					(100 44 28.9 E		RWY01R/19L ILS LOC
		126.3 MHz	/								coverage expanded
		133.4 MHz			ILS CAT II	I-SES	110.1 MHz		13 41 39.3 N		service volume up to 25
		121.5 MHz			LOC/DME		CH38X		100 45 42.1 E		DME altitude not below
			East nuv		RWY 01R						2 500 # AMSI
TWR	Suvarnabhumi Tower	118.2 MHz (3) / 274.5 MHz	Westrug		GP		334.4 MHz		13 39 33 4 N		2 300 IL AMISE.
		119.0 MHz (4)	Vestivy		0.		554.4 10112		100 45 13 1 F		
		121.5 MHz 11/243.0 MHz 11							100 40 10.1 E		
	0		Cost on		USCATU	LSEN	110 5 MHz		13 39 15 0 N		
SMC	Suvarnabhumi Ground	121.65 MHz / 2/5.8 MHz	East apr	on	LOC/DME	I-SEN	CH42Y		100 45 04 2 5		
		121.75 MHz	iviain api	on	DW0/ 10		01142A		100 45 04.2 E		
		121.95 MHz	vvest ap	on	RWY 19L						
					GP		329.6 MHZ	J	13 41 19.0 N		
ATIS	Suvarnabhumi Airport	127.8 MHz / 278.6 MHz		D-ATIS					100 45 40.9 E		
Synthesis Voice Broadcast											

ATC Clea	arance
----------	--------

Frequency	Outbound routes
120.8 MHz	A464 (SOUTHBOUND), G458, M751, W19, W31
133.8 MHz	A1 (EASTBOUND), A202, W1
135.8 MHz	N891, G474, R468 (EASTBOUND)
128.7 MHz	A1/L507, A464 (NORTHBOUND), B346, G463/P646,
	R468 (WESTBOUND), R474, W9, W21

Airports

- Controlled airport (Towered airport)
 - Air traffic control (ATC)
 - Two-way radio with ATC
- Uncontrolled airport
 - No ATC, two-way radio, not required
 - Common Traffif Advisory Frequency (CTAF)

Other categories:

- Civil airports
- Military/government airports
- Private airports

Airspace Classification

Future Airspace

https://www.youtube.com/watch?v=q2bJBrEzQCo

Air Traffic Control Tower

The control tower at Suvarnabhumi Airport is the tallest one in the world!

Air traffic controllers (ATC)

Responsible for the separation and efficient movement of

- aircraft and vehicles operating on the taxiways and runways of the airport itself
- aircraft in the air near the airport, generally 5 to 10 <u>nautical miles</u> (9 to 18 km) depending on the airport procedures.

Map of world regions classified according to the first letter of the ICAO airport code.

D

Air Traffic Control (ATC)

The services are divided into three sectors:

- I. Aerodrome Control Service
- 2. Approach/Departure Control Service (both I and 2)
 - provided at all commercial airports throughout Thailand
 - within a 30 NM radius from each airport
 - Transition altitudes: <u>11,000 feet</u>
- 3. Area Control Service (Tung Mahamek)
 - Enroute

Ground Control (ler)

- Responsible for all ground traffic, aircrafts taxi
 - ▶ Gates → takeoff runways
 - ► Landing runways → Gates.
- Clearance to taxi, you receive this on the ground frequency. At Suvarnabhumi airport, ground is, for example, 121.75 MHz.
- Which way to taxi and which runway to go to for takeoff?
- Once your plane reaches the designated takeoff runway, the ground controller passes the strip to the Arrival/Departure controller.

Don Muang Terminal Diagram (VTBD)

- Runway 21R/03L 03R/21L 3494 m x 61 m
- Asphalt

Suvarnabhumi Airport (VTBS)

Runway

- OIR/I9L (14.42°, 190.42°)
- 01L/19R
- ▶ (LxW) =3700 m x 60 m
- Asphalt

Taxiway

• 30-m wide

Department of Civil Aviation

AIP AMDT 6/11

Runways

- Runway number: between 01 and 36
- Indicates magnetic direction
 - 327° → 330° → Runway 33
 - A runway numbered 09 points east (90°)
 - A runway 18 is south (180°)
 - A runway 27 points west (270°)
 - A runway 36 points to the north (360° rather than 0°)

Magnetic north reference

Q: What is difference in runway number on the opposite side?

47

Taxiway

 Path on an airport connecting runways with ramps, hangars, terminals and other facilities

VFR vs. IFR runways

- VFR = Visual flight rule
 - Rely on <u>visual</u> information
- IFR = Instrumental flight rule

CLAS-

Need instruments

References

- https://www.reference.com/vehicles/four-stroke-engine-work-2ec8d5f1dff0c977
- "Private Pilot," Jeppersen
- www.nasa.gov
- <u>http://www.nappf.com/</u>
- <u>http://www.flightlearnings.com/</u>
- http://slideplayer.com/slide/4741614/
- <u>http://www.cfinotebook.net/notebook/national-airspace-system/national-airspace-sys</u>
- Pilot's Handbook for Aeronautical Knowledge, FAA, 2016.