

Aeronautical Communication and Navigation

Aircrafts, Airports, Phases of Flight, Aeronautical charts

Professor Dr. Pornchai Supnithi
Telecommunications Engineering Department, School of Engineering Center of Excellence in GNSS and Space Weather
http://iono-gnss.kmitl.ac.th

History

Radio transmission across the Atlantic, England

1903 Wright Brothers - first ever manned flight, USA

1911 Cal Rodgers, \$50,000-prize ambition (if < 30 days)
First transcontinental flight (84-hr in the air) 75 stops, 16 crashes, many hospital visits Modified Wright brothers plane (EX) 35-horsepower engine, 50-60 MPH

History

1914 January, $1^{\text {st }}$.
First commercial flight, St.Petersburg - Tampa,
Florida, USA, \$400
5-m altitude, 21 miles, 23 minutes
Benoist XIV plane

1919 London-Paris flight
2 hr 30 min., £21 per passenger

1946 Cathay Pacific of Hong Kong
1947 Malayan Airways Limited (later Singapore,
1951 Japan Airlines
Malaysia Airlines
1960 Thai Airways International

Many types of aerial vehicles

Worldwide numbers

~240 airlines
~45,000 airports (World)
~ 50 airports (Thailand)

June 29th, 2018 (Busiest Air Travel on Record)

202,157 planes in 24 hours

https://www.weforum.org/agenda/2018/07/the-world-s-busiest-day-for-air-travel-mapped

Aircraft parts and functions

$L \longleftrightarrow R$

Four Forces of Flight

$$
\text { LIFT } \quad 1 / 2 * p^{*} v^{2} A^{*} C_{L}
$$

THRUST

Lift

$L=A_{s}{ }^{*} C_{L} *\left(1 \frac{1}{2}{ }^{*} p^{*} v^{2}\right)$

$$
\begin{aligned}
& P=\text { air density }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
& \mathrm{v}=\text { velocity }(\mathrm{m} / \mathrm{s}) \\
& A_{s}=\text { wing surface area }\left(\mathrm{m}^{2}\right) \\
& C_{L}=\text { coefficient of lift (no unit) }
\end{aligned}
$$

Exercise:

Compute the Lift given the following paramters

$A_{s}=510 \mathrm{~m}^{2}$
$\mathrm{C}_{\mathrm{L}}=0.52$
$\mathrm{p}=0.30267 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{v}=265 \mathrm{~m} / \mathrm{sec}$
$1 \mathrm{MPH}=0.44704 \mathrm{~m} / \mathrm{s}$
Aircraft weight $=286$ tons

$$
\begin{array}{rlr}
\rightarrow \mathrm{L} & \left.=\mathrm{A}_{\mathrm{s}}{ }^{*} \mathrm{C}_{\mathrm{L}}{ }^{*}{ }^{(1 / 2}{ }^{*}{ }^{*} \mathrm{p}{ }^{*} \mathrm{v}^{2}\right) & \\
& =510 \times 0.52 \times(1 / 2) \times 0.30267 \times 265^{2} & 1 \mathrm{~kg}=9.81 \mathrm{~N} \\
& =2,817,762.027(\text { newtons, } \mathrm{N}) & \\
& =287,233.56(\mathrm{~kg}) \sim 287 \text { tons } &
\end{array}
$$

Angle of Attack (AoA), Stall

AoA $=$ The angle which the Lift coefficients C will decrease .

http://rckavalaacroteam.com/lift-factor/

Roll, Pitch, Yaw

Rudder

Turn right

re rudder change

 the sideforce acting on it on the right side of the fin
Flap

Movement control

While taxiing..

In the air

Steering tiller

Yoke/Flight Control Column

Engine start, Fuel, Electricity, Generator, A/C Lights around the plane, hydrolics, temperature Seat belt sign, Cabin Pressure

Inside the cabin of Boeing 737

Data Entry, Flight plan screen

Mechanical control:
Throttle, Flap, reverse throttle

Flight Instruments

Performance Instruments

Control Instruments

Navigation Instruments (1)

Navigation Instruments (2)

NATO/ICAO Phonetic Alphabet

International	Lima
Radiotelephony Spelling Alphabet	Mike
The availability of at least one	November
medium of universal communication is is imporant.	November
This is particularly true for safety and effriciency in	Oscar
The alphabet below is	P
internationaly , not only in	
avition but also in maritime operations as well as in	Quebec
	Romeo
Alfa	Romeo
B	Sierra
	Tango
Charlie	
Delta	Uniform
Echo	Victor
	Whiskey
Foxtrot	
Golf	X-ray
	Y ankee
Hotel	
India	Zulu
Juliett	htup://www.icao.int
Kilo	

A Alpha	AL FAH
B Bravo	BRAH VOH
C Charlie	SHAR LEE
D Delta	DELL TAH
E Echo	ECK OH
F Foxtrot	FOKSTROT
G Golf	GOLF
H Hotel	HO TELL
I India	IN DEE AH
J Juliet	JEW LEE
	ETT
K Kilo	KEY LOH
L Lima	LEE MAH
M Mike	MIKE

N November NO VEM BER
O Oscar
P Papa
Q Quebec
R Romeo
S Sierra
T Tango
U Uniform

V Victor
W Whiskey
X X-ray
Y Yankee
Z Zulu

OSS CAH
PAH PAAH
KEH BECK
ROW ME OH
SEE AIR RAH
TANG GO
YOU NEE
FORM
VIK TAH
WISS KEY
ECKS RAY
YANG KEY
ZOO LOO

Call Sign

- Unique designation for a transmitting station
- Aircraft
- Type A: Registration number (marks)
- (Thailand) HS32I \rightarrow Hotel Sierra three-two-one
- (USA) N978CP \rightarrow November-niner-seven-eight-Charlie-Papa
- (Britain) G4980 \rightarrow
, Type B: Company/Agency + Registration Marks Type C: Flight number
, Thaill3
- KLM645

Call Sign

- President of the United States
- Air Force One (US Air Force aircraft)
- Air Force One Foxtrot (when only the family of the President is aboard.)
- Marine One (US Marine aircraft)
- Navy One (US Navy aircraft)
- Executive One (civilian aircraft)
- Vice President of the United States
- Air Force Two (US Air Force aircraft)

Unit for Altitude - Flight level

- Normally, we use "feet" (ft) for Altitude
- After about $11,000 \mathrm{ft} \rightarrow$ Call flight level (FL)

$$
F L A A A=A A A \times 100 \text { feet }
$$

FL300 $=30,000 \mathrm{ft}$

Units for Distance/Speed

1 NM (nautical mile) $=1.852 \mathrm{~km}$ $=6,076$. feet

1 NM ~ $1.15 \times$ statute mile (SM)
1 knot $=1 \mathrm{NMPH}=1.15 \mathrm{MPH}=1.852 \mathrm{~km} / \mathrm{hr}$

1 mach = 758 MPH

Exercise:

A flight is at 'En Route' level of FL300 and speed of 450 MPH , what is
(a) the height from ground in km , and
(b) the speed in km/hr, knots, and machs?
(a) $33,000 \mathrm{ft}=33,000 \times 0.3048 \mathrm{~m}$ $=10,058.4 \mathrm{~m} \sim 10 \mathrm{~km}$
(a) $450 \mathrm{MPH}=450 \times 1.852 / 1.15$
$=724.7 \mathrm{~km} / \mathrm{hr}$
= 450/1.15 = 391.3 knots
$=450 / 758=0.593$ mach

Phases of Flight

475-500 knts
878-926 km/hr
Boeing 747
Takeoff speed $=155-165 \mathrm{knt}$

Preflight -This portion of the flight starts on the ground and includes flight checks, push-back from the gate and taxi to the runway.
Takeoff - The pilot powers up the aircraft and speeds down the runway.
Departure - The plane lifts off the ground and climbs to a cruising altitude.
En route - The aircraft travels through one or more center airspaces and nears the destination airport.
Descent - The pilot descends and maneuvers the aircraft to the destination airport.
Approach - The pilot aligns the aircraft with the designated landing runway.
Landing - The aircraft lands on the designated runway, taxis to the destination gate and parks at the terminal.

Typical Traffic Patterns

There are five different legs of the traffic pattern:

- Upwind Leg
- Crosswind Leg
- Downwind Leg
- Base Leg
- Final Approach

45° DEPARTURE

STRAIGHT-OUT DEPARTURE DEPARTURE

WIND

Procedures of Departure

Be prepared to enter different frequencies for Tower, Departure, etc.

Procedures of Departure

After takeoff

Descending

En Route

-Set ILS frequency (localizer, GS)

- Descend to fixed altitudes (based on flight plan)
- Set descending speed (based on flight plan)
- May change due to traffic condition
- Talk to ATC or read from ACARS printout
- Checklist (VREF, landing velocity (ex. 140 knts)
(Arrival) Freq
(Arrival)

Descend

Turns to Localizer signal

Rear wheels land first

Localizer

Radio frequencies at VTBS

Communication

Service designation	Call sign	Frequency	Hours of operation	Remarks
1	2	3	4	5
APP	Bangkok Approach	$122.35 \mathrm{MHz} / 262.5 \mathrm{MHz}$ $124.35 \mathrm{MHz} / 262.5 \mathrm{MHz}$ 125.2 MHz / 262.5 MHz 121.7 MHz / 262.5 MHz $125.8 \mathrm{MHZ}{ }^{(2)}$ $121.5 \mathrm{MHz}^{(1)} / 243.0 \mathrm{MHz}^{(1)}$		(1) Emergency frequency (2) Clearance delivery for aircraft departing to adjacent aerodromes and helicopters operating within BKK CTR
APP	Suvarnabhumi Departure	119.25 MHz		(3) For RWY 01R/19L (4) For RWY 01L/19R
ARR	Suvarnabhumi Arrival	$\begin{aligned} & 133.6 \mathrm{MHz} \\ & 126.3 \mathrm{MHz} \\ & \text { 133.4 MHz } \\ & \text { 121.5 MHz } \end{aligned}$	$\rangle \mathrm{H} 24$	
TWR	Suvarnabhumi Tower	$\begin{aligned} & 118.2 \mathrm{MHz}^{(3)} / 274.5 \mathrm{MHz} \\ & 119.0 \mathrm{MHz}^{(4)} \\ & 121.5 \mathrm{MHz}^{(1)} / 243.0 \mathrm{MHz}^{(1)} \end{aligned}$	East rwy West rwy	
SMC	Suvarnabhumi Ground	$\begin{aligned} & 121.65 \mathrm{MHz} / 275.8 \mathrm{MHz} \\ & 121.75 \mathrm{MHz} \\ & 121.95 \mathrm{MHz} \end{aligned}$	East apr Main apr West ap	on on on
ATIS	Suvarnabhumi Airport	$127.8 \mathrm{MHz} / 278.6 \mathrm{MHz}$		D-ATIS Synthesis Voice Broadcast

Navigation

ATC Clearance

Frequency	Outbound routes
120.8 MHz	A464 (SOUTHBOUND), G458, M751, W19, W31
133.8 MHz	A1 (EASTBOUND), A202, W1
135.8 MHz	N891, G474, R468 (EASTBOUND)
128.7 MHz	A1/L507, A464 (NORTHBOUND), B346, G463/P646, R468 (WESTBOUND), R474, W9, W21

Airports

- Controlled airport (Towered airport)
- Air traffic control (ATC)
- Two-way radio with ATC
- Uncontrolled airport
- No ATC, two-way radio, not required
- Common Traffif Advisory Frequency (CTAF)

Other categories:

- Civil airports
- Military/government airports
- Private airports

Airspace Classification

- Controlled Airspace
- Class A,B,C,D,E

- Uncontrolled Airspace
 - Class G

FL 600

Future Airspace

https://www.youtube.com/watch?v=q2bJBrEzQCo

Air Traffic Control Tower

Air traffic controllers (ATC)

Responsible for the separation and efficient movement of

- aircraft and vehicles operating on the taxiways and runways of the airport itself
- aircraft in the air near the airport, generally 5 to 10 nautical miles (9 to 18 km) depending on the airport procedures.

Map of world regions classified according to the first letter of the ICAO airport code.

Air Traffic Control (ATC)

The services are divided into three sectors:
I. Aerodrome Control Service
2. Approach/Departure Control Sergice (both I and 2)
p provided at all commercial airports throughout Thailand
b within a 30 NM radius from each airport

- Transition altitudes: 11,000 feet

3. Area Controt Service (Tung Mahamek)

- Enroute

Ground Control (ler)

- Responsible for all ground traffic, aircrafts taxi
- Gates \rightarrow takeoff runways
- Landing runways \rightarrow Gates.
- Clearance to taxi, you receive this on the ground frequency. At Suvarnabhumi airport, ground is, for example, I 2 I. 75 MHz .
- Which way to taxi and which runway to go to for takeoff?
- Once your plane reaches the designated takeoff runway, the ground controller passes the strip to the Arrival/Departure controller.

Don Muang Terminal Diagram (VTBD)

Runway

- 2IR/03L
- 03R/2IL
- $3494 \mathrm{~m} \times 6 \mathrm{Im}$
- Asphalt

Suvarnabhumi Airport (VTBS)

Runway

- OIL/I9R
($(\mathrm{LxW})=3700 \mathrm{~m} \times 60 \mathrm{~m}$
- Asphalt

Taxiway

- 30-m wide

Department of Civil Aviation
AIP AMDT 6/11

Runways

Magnetic north

 reference- Runway number: between 01 and 36
- Indicates magnetic direction
- $327^{\circ} \rightarrow 330^{\circ} \rightarrow$ Runway 33
- A runway numbered 09 points east $\left(90^{\circ}\right)$
- A runway 18 is south (180°)
- A runway 27 points west $\left(270^{\circ}\right)$
- A runway 36 points to the north $\left(360^{\circ}\right.$ rather than 0°)

Q: What is difference in runway number on the opposite side?

Taxiway

- Path on an airport connecting runways with ramps, hangars, terminals and other facilities

VFR vs. IFR runways

- $\mathrm{VFR}=$ Visual flight rule
- Rely on visual information
- IFR = Instrumental flight rule
- Need instruments

References

- https://www.reference.com/vehicles/four-stroke-engine-work2ec8d5f1dff0c977
- "Private Pilot," Jeppersen
- Www.nasa.gov
- http://www.nappf.com/
- http://www.flightlearnings.com/
- http://slideplayer.com/slide/4741614/
- http://www.cfinotebook.net/notelookknáational-airspace-system/national-airspace-system
- Pilot's Handbook for Aeronaútical Knowledge, FAA, 2016.

